Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
PurposeTo develop a physics‐guided deep learning (PG‐DL) reconstruction strategy based on a signal intensity informed multi‐coil (SIIM) encoding operator for highly‐accelerated simultaneous multislice (SMS) myocardial perfusion cardiac MRI (CMR). MethodsFirst‐pass perfusion CMR acquires highly‐accelerated images with dynamically varying signal intensity/SNR following the administration of a gadolinium‐based contrast agent. Thus, using PG‐DL reconstruction with a conventional multi‐coil encoding operator leads to analogous signal intensity variations across different time‐frames at the network output, creating difficulties in generalization for varying SNR levels. We propose to use a SIIM encoding operator to capture the signal intensity/SNR variations across time‐frames in a reformulated encoding operator. This leads to a more uniform/flat contrast at the output of the PG‐DL network, facilitating generalizability across time‐frames. PG‐DL reconstruction with the proposed SIIM encoding operator is compared to PG‐DL with conventional encoding operator, split slice‐GRAPPA, locally low‐rank (LLR) regularized reconstruction, low‐rank plus sparse (L + S) reconstruction, and regularized ROCK‐SPIRiT. ResultsResults on highly accelerated free‐breathing first pass myocardial perfusion CMR at three‐fold SMS and four‐fold in‐plane acceleration show that the proposed method improves upon the reconstruction methods use for comparison. Substantial noise reduction is achieved compared to split slice‐GRAPPA, and aliasing artifacts reduction compared to LLR regularized reconstruction, L + S reconstruction and PG‐DL with conventional encoding. Furthermore, a qualitative reader study indicated that proposed method outperformed all methods. ConclusionPG‐DL reconstruction with the proposed SIIM encoding operator improves generalization across different time‐frames /SNRs in highly accelerated perfusion CMR.more » « less
-
Following their success in numerous imaging and computer vision applications, deep-learning (DL) techniques have emerged as one of the most prominent strategies for accelerated MRI reconstruction. These methods have been shown to outperform conventional regularized methods based on compressed sensing (CS). However, in most comparisons, CS is implemented with two or three hand-tuned parameters, while DL methods enjoy a plethora of advanced data science tools. In this work, we revisit -wavelet CS reconstruction using these modern tools. Using ideas such as algorithm unrolling and advanced optimization methods over large databases that DL algorithms utilize, along with conventional insights from wavelet representations and CS theory, we show that -wavelet CS can be fine-tuned to a level close to DL reconstruction for accelerated MRI. The optimized -wavelet CS method uses only 128 parameters compared to >500,000 for DL, employs a convex reconstruction at inference time, and performs within <1% of a DL approach that has been used in multiple studies in terms of quantitative quality metrics.more » « less
-
Self‐supervised learning has shown great promise because of its ability to train deep learning (DL) magnetic resonance imaging (MRI) reconstruction methods without fully sampled data. Current self‐supervised learning methods for physics‐guided reconstruction networks split acquired undersampled data into two disjoint sets, where one is used for data consistency (DC) in the unrolled network, while the other is used to define the training loss. In this study, we propose an improved self‐supervised learning strategy that more efficiently uses the acquired data to train a physics‐guided reconstruction network without a database of fully sampled data. The proposed multi‐mask self‐supervised learning via data undersampling (SSDU) applies a holdout masking operation on the acquired measurements to split them into multiple pairs of disjoint sets for each training sample, while using one of these pairs for DC units and the other for defining loss, thereby more efficiently using the undersampled data. Multi‐mask SSDU is applied on fully sampled 3D knee and prospectively undersampled 3D brain MRI datasets, for various acceleration rates and patterns, and compared with the parallel imaging method, CG‐SENSE, and single‐mask SSDU DL‐MRI, as well as supervised DL‐MRI when fully sampled data are available. The results on knee MRI show that the proposed multi‐mask SSDU outperforms SSDU and performs as well as supervised DL‐MRI. A clinical reader study further ranks the multi‐mask SSDU higher than supervised DL‐MRI in terms of signal‐to‐noise ratio and aliasing artifacts. Results on brain MRI show that multi‐mask SSDU achieves better reconstruction quality compared with SSDU. The reader study demonstrates that multi‐mask SSDU at R = 8 significantly improves reconstruction compared with single‐mask SSDU at R = 8, as well as CG‐SENSE at R = 2.more » « less
-
Late gadolinium enhancement (LGE) with cardiac magnetic resonance (CMR) imaging is the clinical reference for assessment of myocardial scar and focal fibrosis. However, current LGE techniques are confined to imaging of a single cardiac phase, which hampers assessment of scar motility and does not allow cross-comparison between multiple phases. In this work, we investigate a three step approach to obtain cardiac phase-resolved LGE images: (1) Acquisition of cardiac phase-resolved imaging data with varyingT1weighting. (2) Generation of semi-quantitative maps for each cardiac phase. (3) Synthetization of LGE contrast to obtain functional LGE images. The proposed method is evaluated in phantom imaging, six healthy subjects at 3T and 20 patients at 1.5T. Phantom imaging at 3T demonstrates consistent contrast throughout the cardiac cycle with a coefficient of variation of 2.55 ± 0.42%.In-vivoresults show reliable LGE contrast with thorough suppression of the myocardial tissue is healthy subjects. The contrast between blood and myocardium showed moderate variation throughout the cardiac cycle in healthy subjects (coefficient of variation 18.2 ± 3.51%). Images were acquired at 40–60 ms and 80 ms temporal resolution, at 3T and 1.5, respectively. Functional LGE images acquired in patients with myocardial scar visualized scar tissue throughout the cardiac cycle, albeit at noticeably lower imaging resolution and noise resilience than the reference technique. The proposed technique bears the promise of integrating the advantages of phase-resolved CMR with LGE imaging, but further improvements in the acquisition quality are warranted for clinical use.more » « less
-
Abstract Functional magnetic resonance imaging (fMRI) has become an indispensable tool for investigating the human brain. However, the inherently poor signal-to-noise-ratio (SNR) of the fMRI measurement represents a major barrier to expanding its spatiotemporal scale as well as its utility and ultimate impact. Here we introduce a denoising technique that selectively suppresses the thermal noise contribution to the fMRI experiment. Using 7-Tesla, high-resolution human brain data, we demonstrate improvements in key metrics of functional mapping (temporal-SNR, the detection and reproducibility of stimulus-induced signal changes, and accuracy of functional maps) while leaving the amplitude of the stimulus-induced signal changes, spatial precision, and functional point-spread-function unaltered. We demonstrate that the method enables the acquisition of ultrahigh resolution (0.5 mm isotropic) functional maps but is also equally beneficial for a large variety of fMRI applications, including supra-millimeter resolution 3- and 7-Tesla data obtained over different cortical regions with different stimulation/task paradigms and acquisition strategies.more » « less
An official website of the United States government
